6.

7.

TABLE OF CONTENTS

Matrix-vector Nétationf. Matrix-vector Multiplication

Linear transformations

Matrix multiplication = composition of linear transformatjons
Block multiplication

Transposition and conjugate transposition. Euclidean inner products
and outer products. Euclidean norm. Orthogonality :

Frobenius and 2-norms of A g FrXxm

Solving (lowér) triangular systems

‘Appendix. Some simple codes which use recursive calls

AO-1

AO-9

AO-11
AO-16

AO-22
AO-35
AO-38

AO-45

ALGEBRAIC OPERATIONS WITH VECTORS AND MATRICES

1. Matrix-vector Notation. Matrix-vector Multiplication.
Basic Linear Algebra is about “solving® systems of linear equations.

One general form of this problem is:

-given scalars

o5 i=1, 2,...,11_1, i=12,...,n,
and ‘-\9
\‘.A-. ﬁjv i=1,2,..,n, '
find scalars :

&5 €21 -0y €y
so that :

o316 ol te o én =6
ceg €y tagby . topnén =6,

anlfl + an2£2 +...+ a'm:nsx:;'. = ﬁn'
This is 2 system of n linear equations in the m unknowns €11 €1 veey €y

We write it, much more compactly, as
Ax=bh.

Here

44 & Q.
21 22 . 2m -
A= i _.[a.1 a, am]_[an]
%1 %2 eer %%

is the n x m coefficient matriz of the linear system. Its columns

L H

. [o' 297
21 .

= |, i=1,2,...,m,
Cni

and the right side
AO-1

are n-vectors, and

. bm

is the m-vector of unknowns.

The first way of writing a linear system is at the “lowest level,” the second is at the “highest

level.” Note well our nolalional conventions.

Scalars (“numbers”) are denoted by lower case Greek letters. This way, if you see a Greek létter
you know it represents a scalar. The scalars can come from a general “field” F We typically have
F =R, the real numbers, but the case F = C of complez numbers is also important (for
“eigenproblems”). Less important, but also arising in applications, are the rational numbers Q and
the integers Zp modulo p, a prime number (the case p =2 is yseq extensively in algebraic coding
theory). '

To keep things simple let us henceforth use F to denote cither R or C, but be aware that many

of our results will extend easily to more general “fields.”

An m-vector is an m-1uple of scalars, is always written as 2 column, and is denoted by a lower
case Latin letter. The elements of m-vectors are denoted by a “corresponding™ Greek letter. The
“correspondence” is imperfect; see the table on the next page. For instance §; is the jth element of x .

and 7 is the jth element of y. The set of m-vectors with elements from F is denoted by F™. Thus

the vectors x, y € F™ are equal if
Ej=77j’ * j:l,z,.-.,m-

A very good, “intermediate level,” way to think of an nx m matrix A is as an m-tuple of its
columns:

A=[a.1 2 ... am], each 3, €F™, -

Of course we may also think of

ke

AO-2

The Greek Alphabet and Latin Notational Corrspondents

Alpha A a a Nu N -v n,v
Beta B B b Xi =% x-
Gamma T ¥ ‘c, g Omicron 0 o)
Deltaw A § d PP m =& p
Epsilon F € € Rho P] r
Zeta = Z ¢ z Sigma T o 5
Eta H 7. h,y Tau T T t
Theta e ¢ Upsilon Y v u
Tota I L i ' Phi o ¢ f
Kappa K x k - Chi X X
Lambda A A 1¢ Psi vy

Mu M H m, u Omega | Q S w w

as being built from its elements The scalar oj; lies at the intersection of the ith colurnn and jth row
of A. With a few basic exceptions matrices are denoted by upper case La.tln letters with their
columns being denoted by the corresponding lower case Latin letter. Thus a; is the ith columnn of A
and b; is the ith column of B. The set of all n xm matrices with elements from F is denoted by
F?X™, Thus the matrices of A, B € F2X™ are equal if

aizbi, i=1,2,...,m,
that is if

o _,6.“, i=1,2,...,m, j=12,...,n
We have no notation for the rows of 2 matrix. If we wish to refer to the rows of a matrix we must
use transpose notation adroitly—see below.

In matlab,
A(j,i) = (,i) element of A
A(z,i) =ith column of A
=&,

A(,:)=jthrowof A

and.

A0-3

A()=a:= € Fmn -

=
the “supervector” obtained by “stacking” the columns of A to form a single mn-vector. The matrix
A is actually stored in the machine as the vector a.

~ - Of course a matrix can consist of one column (or row) and an D-vector can consist of one element.

For algebraic purposes n-vectors can be though of as one colump matrices.

It turns out that “solving Ax = b” involves “factoring™ the matrix A in various ways. Before we
factor matrices we must learn how to multiply them. But the computation of 2 matrix produc_t AB is
easily reduced i'q the special case of computing the matrix-vector product y = Ax. In fact this is the
most fundamcntle o;cration of the whole subject. Moreover, if we can compute Ax we can check if a

tentative solution vector x solves Ax = b. How to compute Ax is evident from the treatment on page
1.

Matriz-vector muItiph'caiion,'
- -
3!
~ 3
Ax:[a, 2, ... am] _2

$m |

=ab i+t ety

’ m
=: 12 3 &
=4 thap e ey
m
=3 ; {iai,

is a linear combination (&c) of the columns of A.

AO-4

Ezample.

1 0
2 1 o 2
Ax = -1
3 1 o
3
40 7

(1] [o] (1]
= 2 2 ! (-1) + 2
= +. 1 0 3
y _4.J _OJ L 7J
(27 [0] [=5]
4 -1 6
= + +
-1 1 0
r2] r—3_ F—l-
3 6 9
= + =
0 . 5
J 21‘ 29J
Thus
[
x=] -1
3
solves -
[1]
9
Ax=b:=
. 5
29J

Of course this is the same as the “usual” way of cdmputing ¥ = Ax which is

AO-5

PO

m £
nj:-zl &jifi, J=1, 2,-.., n.

= -
-

If pp (°'F) isa floating point multiplication (addition) of elements of F then the flop count for
computing y = Ax, with A € F**™ jsmn pp+(m=1)nag. For practical problems m and n can be

very large; in this case this is about mn (g + &). But our “vector formulatxon can be much faster
F+5F)

on machmes with “vector architectures.”

But what is more important is the link between Ax, the key operation of matrix computation,

and linear combinalion, the key concept of (the more abstractly oriented subject of) Linear Algebra.

Linear combinations of elements of F® are built up from the two more basic operations of

addition and scalar multzphcahon

a. ifx,ye F"‘ t.hen

-

& /3 :
3 N2

X+y= .2 +1 .
£ T

» - r -
§i+my m+é§
&+ 1, m+&;

fn +nn nn+fn

EY+x;
b. ifx€F™ aF, then ’ i
'3 &
62 ol €2&
xa=| a:= .

{n €na
a,y
«@

= .fz =: oXx.
ofn

"AO-6

The zero element in FR i

Fo—_\

0

Ui

r n elements .

o]

Geometric interpretations:

a. "
F y %+ y
x
O
b.
ﬂ: X2 =2x
X
5 —
/Q X)) = (:-l)x 21—~

2 is the “parallelogram rule” for adding elements of F=.

These pictures are merely suggestive. You
"+ can see them in R?, R3 and even in R® for general n. In

R™ three vectors usually determine a rlane

AOT

and two vectors usually determine a line. InR®, if x #0, 2s o runs over all of R the point xa = ax

runs over the whole line ¢ passing through 0 and x. For R = C yse your .“imagina.ti'on."

" Note that the formation of &cs of elements of F® is triviak the algebraic operations are merely
done elementwise (y=Ax= i g§;).
1

The set F®, together with the operations of addition and scalar multiplication, is the primary and
mosl ‘important example of an algebraic system known as a linegr space (or a vector space). More

‘ precisely, F" is a linear space with respect fo the “field® F. (Not s0) roughly Speaking, a general

linear space is an algebraic system in which it “makes sense® to form fes. ‘There is a set of elements

Y and a scalar “field” F, usually F =R or F =C. One must be able to form fcs of finitely many

elements of ¥, with coefficients from F. The key requirement is that these fes must again be in ¥.

This is closu‘r"'e\under the formation of écs.

The (many) azioms for a general linear space are simple abstractions of the basic properties of the
linear space F®. They are tedious and not very interesting. We mey put them into an appendix. But

there are plenty of interesting and useful examples of linear spaces which are related with matrices,

In fact ¥ = F™*™ is a lincar space with respect to F. If
A=[aj-] and B=[ﬁj;] -~
are in F®X™ then the sum of A and B is
A+B: =[aji'+ﬂ,-;]
and the multiple of A by the scalar o eFis
ad: =[cay]
=[aji&] =3 A&.

Again, the algebraic operations are merely done elementwise. The key assertion of closure, that -

A +B and oA are again n x m matrices with elements in F, is {riyiql,

Note that we form fes of n x m matrices in algebraically the same way as we form fcs of their

associated “supervectors.” In fact matlab forms fes of matrices this way.

. ' * AO-8

There is an operation of scalar addxtxon which i is peculiar to matlab, but does not occur in

usual matri.x theory. If A-= [] anm andea€F then

a+Ac: =[a+aj;].‘
Thu.s ais added_ to each element of A.

2. Linear 'tra:#sformations. _
Matriz-vecior multiplication,

A:Fm o pn
‘a; ' - X — Ax

N

is ¢ linear iran'\;for'matz;on, that is _ _
Alaz+ Py) = a(Az)+ (Ay) - | o
(identically, for allx,y € F™ and all a, B €F).

O . By the definitions,
: m
Alox+By) : = le &(at; + Bn;)
. m m
=o) g+ X 2y

A
=: a(Ax) + A(By). , n

.o

Problem 1. Which way is cheaper, in terms of flops, for large m ang n?

Definitions.

a. An (abstractly given) function

A: FR L Fn
' x — A(x)

is a linear trensformation if

Afex+ fy) = aA(X) + BA(y).

b. The columns of the nxn identity matriz

I=In=‘[e1 e ... cn]

AO-9

T 'o-’-?. o

ooi
0 1 0 0]
= 0 m=a))
001 0|

0001_’

are the azis vectors in F®. Their “lengths™ (here n = 4), not exhibited in the notation, are

determined by the context. The set {e, ey, ..., e,} forms the standardbasis for F2: every
x € F™ can be expressed unigquely as the & ' . '

n
= E Cifi .
I
~ In matrix terms this is Just x=1Ix! .

- The word. “basis” is also a key word of anear Algebra but ve are not using it here; “standard- _

basis” is one ward and we have just defined the standardbasis for F to be {enr e ey e.}).

The axis vectors lie on the coordinate axes. For n=3

]
oy
“
n
w
Y
.
-00
——

We have
the ith column of A.
Every linear transformation
A F? o FR '
"can be represented by @ mairiz. In fact ﬁc .hai:e
A(x) = Ax with = Alyy).

O Write x as an éc of the axis vectors and use the lmeanty of A (this works for £cs with arbitrary
finite numbers of terms)

AO-10

' 4(_x)54(> e,.gi) | .

:a.i

= Ax. .. . - |
Pure mathematicians use this in the reverse direction, to forget about matrices. But applied

scientists must compute with matrices!

Ezample. Let the “abstract” transformation 4 rotate each vector in R? counterclockwise through

the angle 8. To see that Rog is linear note that Rq rotates each of the figures on page 7 (F® : = R?%)
similarly, Thys |

N
N

Rog(x +¥) = Ry(x) + Reg(y), |
Rglox) =aBylx), -

and so R, is linear. But what is its matrix representation? By Trigonometry,

7 -o
Rgley) = s | Reled = .t

with
Y:=cosb, o:=siné. 4
Thus
Yy -0
Ro =
14 7

represents R;. Note that e, and ¢, are perpendicular, and so are their “Rg-transforms,” the columns
of Ry, ' |

3. Matrix multiplication = composition of linear transformations,

In general, in Mathematics, if we have two functions f and g, with the range of g contained in the

domain of f, then we may compose f and g to get

AO-11

h=fog .

o’

with

h(x) : = f(g(*))i X€ ﬂf

Now consider the matriz-vecior multiplications

€(1i- A(x)

The composed transformation € js linear, for we have
Clax+ fy) : = A[Bi(czx + By))

= A[aBx + fBy)

= aA(Bx) + SA(By)

=: aC(x) + AC(y),

_using the linearity of each matrix-vector multj

plicatioh. ThusC; Fri_, pn
matrix '

is represented by the

AO-12

in~which
G=C(g):= A(ﬁei) = Ab;.
The matrix C € FRX™ g called the matriz product of
| AEFRXP and BeFPXm,
in this order, é.nd we write
AB:=C.

We have thus shown the very important relation that

v

m

v AB.—.A[b, b, ... b]

=[Ab1 Ab, ... Abm]

That is the ith column of the matrix product AB is A times the jth column of B. This reduces the
problem of computing AB to that of computing Ax, with x running through all the columns_ of B.

Problem 2. What is the flop count for matrix multiplication, with A and B as above?

Of course we still have the “lowest level” formulation of matrix multiplication in terms of the

elements of the matrices. If A =[;;], B =[ﬁj;] and C =[%] (our standard notation) with

C = AB then

P
' 7ji=k§:l ajkﬁk;; i=1,2,...,m, i=1,2,...,n.

In fact these are the same formulas os above, but written in a clumsier way. Both techniques give the

same results numerically, provided all sums are computed in the natural order! .

Ezample.
[1 0 =1]
2 1
. 2 1 2
AB = 3 -1 1
1
: 3 1
4 0 7
" ' .
Ais4x3,Bis3x2, 50 ABis4x2.
AO-13

We already computed

r_l‘ : L
9
5

|2

on page 5. And since the elements of b, are all ones, Ab, is the sum of the columns of A. Thus

Ab, =

[1 o
9 5
AB= _
) 5 4
K 1|

The reader should check this with the usual “two finger”™ method of matrix multiplication.
Matrxz muItszzcatzan is not commuiatwc, that is ‘
AB 3 BA
in 'g'eneral. In fact if
. A eFrXxa anci BeFpxm

then AB is defined only if p=gq, and is nxm, BA is deﬁncd only ifm=n,andisp xq. Thus AB
and BA are both defined and are camparablc ifendonlyifm=p = =p=q. That is both matrices

must be square and of the same order n. But almost any pair of 2 X 2 matrices one writes down will

not commute For example

0 1 0
A= , B=
0 o 1 0
give | -
AB=A 0 :
-[‘]" o o [.
L o
0 o0
BA=B[0 o]= # AB.
o 1 |77

AO-14

Matrix multiplication is associative, that is

A(BC) = (AB)C,

it follows from the general fact that composition of (any kinds of) functions is always associative,
" The distributive law ‘ '

A(B+C)=AB+AC
follows from the linearity of Ax in the vector x:

The distributive law

th

N (A+B)C=AC+BC

follows from the linearity of Ax in tHe matrix A:

(A+B)CiEACi+BCi .

We give matlgh codes for the two methods of matrix multiplication which we discussed above.

We first give the “ysyal” “two finger” method. We compute C = ARB.

function C = inmulO(A, B)
[n q] =size (A);
[p m] =size (B);
ifp~=gq
error ("AB not defined.)
end - '
C = zeros(n, m);
fori=1:m
forj=1:n
s =0;
fork =1 :p .
s =s+A(j, k) « B(k, i);
end
CG, i) =s;
AO-15

"~

end

end

.

This is the usual way to code matrix multiplication, in fortran say. It involves a triple loop and
loops are incredibly slow in matlab. The statement C = zeros(n, m) sets aside a storage area for C.

It is not strictly necessary but it makes the triple loop as fast as possible,
By contrast the column ‘oriented code involves only one loop: .

function C = mmuli(A, B)
‘ tn q] =size (A);
[p m] =size (B);
fp~=gq
etior (AB not defined.)-
end h ’

C = zeros (n,m);

Y

fori=1:m
C(:,i) = A + B(;, i);

end
Of course the highest level code is the single command C = AsB!
All three codes should give the same results, numerically, 01:1 Suns and HPs.

Problem 8. Do they, in fact, give the same numerical results on these machines?

4. Block multiplication
For any matrix A let

cols A: = # columns of A,

rows A: = rows of A.

Following is a general result on block multiplication which generalizes substantially the

“two finger” method of matrix multiplication.
If A and B are partitioned into blocks,

A=[Aji]’ i=1, 2,....p j=l: 2, -.--:'n:
B=[Bji], i=1,2,...,m, j=1, 2,...,p
so that
cols Ajk = rows By,

AO-16

then
AB=[Cji], i=1,2 .., m, i=12,...,n,
with
C i‘ A.B
J‘-k'--l Pl -

O The proof of this basic fact is “too boring for words.” W, will use only very special cases of it.
In fact we have already worked with the partitioning of B by columns and, for the one column matrix
B =x, the partitioning of B by rows. .]

Ezample. For partitioning A and B into 2x 2 block matrices ve have

vAu 4, ([B, B, _ | AuBu+ApB, AnBiz+Ag,B,,
Az Ay ([By By, A21B11 + Ay,B, AnBia+AyBy,

provided the eight matrix multiplications are defined. Thus

111 o 171 0 c. o
AB=| 2| o 112 3 11 ™12
34 1 ¢ 113 .2 Cu Cp
with
1
c 2 . 0 1 1 . 1
= -+ = = ,
2 1 9 1 3 1

 AO-17

L1

C. 2 1 o 0 1 2 3
22 = 3.[]+ 3"

1 0 2 T
’— 2 0 3 2 2
= -+ =
3 0) 3 5 3
So
2 3 3
, AB=| 3| 5 2
'.5. A - 4 5 3

,\'

as can be checked with the “two finger” method.

Aéph'caiion. The basic step of Gauss factorization. If

r -

b -
A= « , a0,
a BJ .
then
[.1] a b’
A=
e I G
with

€=%, G=B-¢'.
Here b’ is the (conjugate) transpose of b. See §5. The result is easily verified by block multiplication.

Problem 4. If the two 4 x 4 matrices A and B are partitioned as

X x b4 b4 X X x X

b 4 x X x X X X b4
A= B=

b d X X X X b 4 b4 b 4

X b 4 b x] >3 X b 4 b 4

-

then what is the block structure of C = AB? Le., what are the sizes of the blocks?

If we partition A by columns and B by rows then we can compute AB as a sum of “outer
products.” See §5. :

AO-18

- In matlab; _
function C = mmul2(A, B) ‘ -
[n q] = size (A); o
[P m] =size (B); '
ifp ~=gq
error("AB not defined.”)
end
C = zeros (n, m);
fork=1 :p A
C=C+A(K) = B(k, :);

end

This form" of matrix multiplication is uscd In our codes mulm. . . for computing doudled

precision ma.tnx products.
Cost of computing AB, A, B FrXn
Ax uses p(n) = n? mults
and a(n) = n(n ~ 1) adds.
Thﬁs AB =[Al:>1 Ab, ... Ab_], computed in the “najve» vay, uses
#(n) =nd mults, and
a(n) = n%(n - 1) adds.
Forn= 2, multiplication of two 2x2 matriges, we have
K(2) =8, «(2) = 4.
Application of block multiplication. Fast matriz multiplicaliott (Strassen 1969).

a. If

= Ci Cop _ | Au Ap || By B, - AB
Ca Cyy Az Ay || By B,

then C can be computed from
Ci1=D;+D,-Ds+D,,
Cy =D,+D,
Ci2=D;+Dg
Cy2 =D; +Dy=D, 4+ D,

AO-19

with -
Dy = (Ay; + Ag)(By; +Byy), -
Dy 1= (A5 +4y) By,
D3 : = A;; (By, - By,),
Dy := Ay, (By —Byy),
Ds : = (A}; +A;3) By,
Dg : = (Az) ~ Ayy) (B +Byy),
D7 2= (A13—Ap) (By; +By,).

Corollary. Two 2 x 2 matrices can be multiplied with 7 multiplica.ﬁc.:ns and 18 additions of
scalars. Thus one multiplication can be replaced by 14 additions. ‘This is not a godd trade on

today’s machines, or even on older ones. .

Better corollary. The product of two 2n x 2n matrices can be computed with 7 multiplications

and 18 additions of n xn matrices.

- - Now divide and conguer. Forn = 2% k=0,1,2 -+« let p(n) and a(n) deﬁote, respectively, the
numbers of multiplications and additions of scalars used to multiply two nxn.ma.tricw. Thus,

by ¢, we have the recurrence relations
r(1) =1, o(1) =0,
£(20) =7 (n),
a(2n) =7 o(n) + 18n2.
By induction, or direct verification,
pn) =7% k= log, n,
o(n) = 6(7% ~4%) < 6.7%,
Now .
7% = (2‘052 7)k = (2k fog2 7 =nP

with

[8: =log, T=2.8074]

Thus we hé.ve

AO-20

Strassen’s theorem. Multiplication of two n X n matrices, with p = 2k, requires at most n

multiplications and 6n8 additions of scalars.

Kolmogorov conjectured that the ezponent for matriy mulﬁplicétioﬁ, here f=2.8, coulq be
reduced to 2! Pan, Schnhage reduced it to 2.51, roughly, 1 may now be < 2.5, but the
associated algorithms must not be very elegant.

Problem &,
2. Verify Strassen’s identities of part (a) above.

b. Show that p(n) = 7%, a(n) = 6(7k— 4"), with k = log, n, and equivalently n = 2%, solve the
Tecurrence relations of part d above.

Our matlab code strassen follows. It turns out to be-incredibly slow in matlabl!

function C = strassen(A, B)

C is the product of the n by n matrices A and B computed by STRASSEN’s fast matrix
multiplication algorithm. T his program uses recursive calls. To keep the code simple it is
assumed that n is apowerof two (n=1, 2, 4,8, ...).

Strassen’s algorithm multiplies two matrices of order n = 2%k with 7k multiplications and

6(7'k — 4k) additions. The tota] arithmetic work is less thap 7(Tk) =Tn’lg 7 flops. Here Ig

is the base two logarithm. Since lg7 .=. 2.8074 this compares favorably with 9n°3 flops for the
usual method. :

Copyright (c) 8 September 1990 by Bill Gragg. All rights Feserved. Revised 25 March 1994,
strassen calls strassen.

begin strassen
Perform some error checks.
[n m] = size(A);

ifm ~=n
error (‘First matrix is not square.”)
end

[n m] = size(B);

ifm ~=n
error("Second matrix is not square.’)
" end

m=n;

whilem >1
m=m/2;
end
ifm ~=1
error (‘Order of matrices is not a power of two.)
end

AO-21

-yt

“Do Strassen”. .
ifn<?2 -
The trivial case n = 1.
C =,A*B;-‘
else ' _
- Partition the matrices. (This creates additional storage!) -
m =n/f2; p=1im; q=m+L:n;

All = A(p,p); A12 = A(p,q); Bll = B(p, p); B12 = B(p,q);
A2l = A(q,p); A22 = A(q,q); B21 = B(q,p); B22 = B(q,q);

Use recursive calls to compute seven matrix Products, also using ten matrix additions.

D1 =strassen(A11+A22,B114+B22); D2= strassen(A21+A22,B11);

D3 =strassen(A11,B12—-B22); D4 = strassen(A22,B21-B11);
D5 = strassen(A11+A12,B22); D6 = slrassen(A21—A11,B11+Bl2_);
D7 = strassen(A12--A22,B21+B22); o

Now compute the blocks of C, using eight more matrix additions.

Cll = D1+ D4 — D5+ D7; Cl12 = D3 + D3;
C21 = D2 + D4; C22 = D1~ D2+ D3 4 D6;

Arrange the blocks to form C itself.
C=[C11 C12; Cc21 C22);
end

end strassen

Reference:

{1] Volker Strassen, Gaussian elimination is not optimal. Numer. Math. 13(1969) 354-356.

-

5. Transposition and conjugate transposition. Euclidean inner products and outer products. Euclidean
norm. Orthogonality.

Transposition.
The transpose of the column n-vector
[¢,

§2

.

is the row n-vector

The transpose of the n x m matrix

A‘—-[a1 a.2'... am:’:[aj;] - - .

isthe mxn matrix

Fa}."
AT .= q':[%]
o]
Ezample. ‘\ :.
f_1\5 T)
2 Vg 1.2 3
N il I N ;

Thus AT is the reflection of A in its main diagonal 111 €39, @33, Matlab uses “./» for «p n
Since the matrix A Tepresents 2 linear transformation from Fm to F? then AT represents a linear

transformation from F™ to F™. (This is not the “inverse” of A. Matrix transposition is much simpler

than “matrix inversion.”) .-
If we transpose AT we gel A back:
T
A= (AT) .

In particular for the one column matrix x,

T hy
x = (xT) _—.[51 & ... sn] :
This is a typographically more convenient way to write (column) vectors.

We have defined AT through the partitioning of A by its columns, For more general

partitionings we have results like: if

Ay A,
A= AZI\AH
Az Ay

"AO-23

ot

- then
T T T -
An Ay Ay)

AT = N\
: T
A'lr2 A;rZ A32

Check this out on an example, nof a 3 x 2 matrix!

How does transposition relate with the formation of cs of matrices? This result is clear:

(A +8B)T = «AT 4+ gBT

A scaler product (dot product in old terminology) is 2 row times a column:

oy -) -
N - . K
" v
T 2
viu _[vy v, v,]
v, J
v vttty
>
= Vkvk
1
>
= vk”k
1
=ulv,

We can remernber-this with a picture:

vou = ,='

The dot “-” represents a scalar! Note that u and v must have the same “length” n (matlab’s
“length”). If F =R then vTu is also the Euclidean inner product of u and v, but it is not the

Euclidean inner product of u and v if either has any nonreal clements,

An outer product is a column times a row:

AO-24

=V[Ul vz ves Um]

=[VUI Yup, ... va'] .«

Each column of vu? is a scalar multiple of the same vector v. Quter products are basic for a
“correct” treatment of Gauss faé:torization,

but they should be computed explicitly, in elementwise
form, only rarely. ‘After all, if A = vuT

is n xm then it takes mn storage locations to store the
elements of A, but only m + n locations to store the vectors u and v which determine A.

Matrices like
A=I+wT

occur in impé'r‘(_’.a.nt applications and they are used to compute vectors

<4

y=Ax=(I+vuTx‘

=x+va, a=ulyx, N

If Aishx n, that is if u, v € F®, then the indicated algorithm computes y with about

2n (”IF + aF) for large n. By contrast, the flop count for computing Ax when A is an arbitrery nxn
matrix is n? "3 +af). |

Problem 6. Show that a product of two outer products is a scalar product times an outer product.

To describe the “usual” “two finger” method of matrix multiplication, since we have no notation

for the rows of a matrix, we write the matrix product as

-

&

1
T
2
A.TB= . [bl b2 ase bm]
T
| =
=ra;fbij i=1,2,...,mj=12..,n.

This is the scalar product form of matrix multiplication. Of course it is another special instance of

block multiplication. But we also have the more interesting outer product form of matrix
multiplicaﬁion »

AO-25

o

ABT::[a‘l a2 ... a.p]

= alb'lr +.a2b;r+ ek apb;f

P
: ; akb;f.

The most important fact about transposition is the reverse order yl

N
<

e for transposition:

(AB)T = BTAT|, -

This can be.remembeted with the help of a picture:

-
(AR)
(But remember: transposes are not “inverses™!)
O We prove the reverse order rule using the outer product form of matrix multiplication. First, if

T

vu =-VjviJ, i=1,2..,m, i=42,...,n,
then
(vuT)‘r::Fuiujj, i=1,2,....,n., j=1,2,...,m;
=rvjui-
=uvT,

A0O-26

Now consider

P
ABT'—‘ zl: akb;f.

>
- -

a sum of outer products. Since the transpose of a lxnear combmatlon of matrices is the same llnear

combination of their transposes (the boxed formula on page 24) then

(aBT) =(O b,'f)T

“ .
N ‘= BAT,

Now replace BT by B, and B by BT (i.e., rename BT as B).
multiplication.
Conjugation.

The conjugate of

is

>
i
~—
!
)
I
———
o
—

=conj(A) in matlab,

Ezample, If
1431 44i
A=| 2-4i
3—i 1+4i
| then

AO-27

ot

then A = A.
Conjugate iransposition.

The conjugate iranspose of

=

is

’

A'::[afj]EKTEA

Thus we may conjugate A and transpose the result or, cquivalently, we may transpose A and
conjugate the result.’
Ezample. With the above A,

o [1-35 244 3+i
4-i I-i |

[143 2-4i 3-j
d4i - ﬁ+iJ

—= [-1—3i 2441 3+i
41 i 1-i J

C
I

Al=; s ,
in general.

We use A, gs in matlad, to denote the conjugate transpose of 4. The more frequent notation is
AH and A+ is also used. -

corresponding facts for conjugate transposition. Clearly,
. (s
a=(a).
A0-28

and if

Ae An Ap A
A ™M, 4,
then
AL A
A=l Al M
Als A

The previous rule
9

* .(eA+PB)T=aaTy pBT,

at least for square matrices A, B, states that transposition is ¢ linear transformation on

space FRXm pg, conjugate transposition we have instead
(A +BB) =o'A' + B'B’

=TA'+6B.

For square matrices A, B this says that conjugate transposition is 2 conjugale linear transformation

on the linear space CP X1,
The reverse order rule for conjugate transposition is

(AB) = B’A’].

O - Note that it says that
——\T
(AB) =BTaT

or equivalently, by transposition,

AB=14B. (+)
Let C =[7ji] : = AB. Then
' p

Now we have

fore, pecC. And, more generally,
-AQ-29

-“t
-3t

ottt tao, =7 +&‘2+...+'<TP

for ay, a,, s+sy&, €C. Thus

P —
Th = a-ﬁ-Eﬁ oy By;
By S e kPl

showing that C=AB = X B, i.e., showing that (#) is true.
Euclideen inner product and norm for F* (F=R or C).
The Euclidean inner product of the vectors x, y e FR is

Y . <HX> =<y, x>, i =y'x

N
v

b

n - n
=2 nb=)Y Wik
=y’ *x in matlab.

Note that
n _ n
x'x = =2 &I >0,
kz_-:l fk fk kg l kr
with equality if and only if x = 0.

The Euclidean norm ofxefF™is

Ixll = Bx]l, : = sart(x's)

()"

=norm(x) in matlab.

AO-30

-

There are more general inner products and norms for F*, but these Euclidean ones, y'x ang
Vx'x, are Tepresentative and good enough for our basic purpssss. The Euclidean norm of x is
sometimes also called the 2-norm .of x or the (Euclidean) length of x. The la.tter should not be

confused with matigh’s length n of an n-vector x,

The primary use of vector norms is to determine if the elements of the vector are larée or
small. For instancé if we solve Ax = b by some algorithm then, even in “njce” cases, the A
numerical solution, call it fl(x), cannot be expected to agree with the true solution x due to rounding
errors. The norm || fi(x) — x| 2 8ives us 2 feel for how good, o how bad, fI(x) approximates X.

If x itself is large, or small, then it is more appropriate to work with the relativized error norm

I1(x) ~x]p,

W Thus the use of norms in ‘this way condenses many crrors, i. e.‘ the errors in each

element of the computed x, into a single number. See, for example, the diary gfsf. The Euchdean

norm || x || = ” x[] (and all general norms) satisfy the homog,m.,ty property

Ulex] =1e1 x]]. : .

O For the definition of x| = |Ix Il , and the reverse order rule for conjugate transposmon give
fex]|2= (ex)’(ax) = x'a’ex
=x'@ex=x'|afx
=lefx'x=jef ||x||?
and the result follows by taking square roots. | n

In particular we have

letl=1ai]€], o €€q].

A vector u € F™ is a unit vector (with respect to the Euclidean norm) if

llull,=

For instance the axis vectors e; are very special unit vectors,

Any nonzero vector x € F™ can be normalized to become a unit vector: = I x” .
: x
2

O Fora= > 0is a scalar and |]u|12=a||x||2;l. n

1
IFx1r,
Two vectors, x, y € F® are orthogonal, or perpendicular (with respect to the Euclidean inner

product) if

AO-31

-

(4
Of course this js equivalent with x'y = (y'x) =0. If x and ¥ 2re orthogonal we sometimes write
xLly oryx - . ’

Ezemples.
1.- The a.xxs vectors ¢; and ¢; are orthogonal if i # j.

2. The columns of the real rotation matrix

oy . -
KX [T ©] F v ey =y,

These columns are also unit vectors since
?+el=1.

3. The columns of the matrix

associated with the complex number
z =x<+iy

are orthogonal:

[x y] ==xy+tyx =\
' X

-

The common 2-norms of these columns is

Vxity? =lzl. |
If 2 0 we can normalize these columns to get the polar Jactorization of A
A, =IzIR,y . - .
with Ry as in #2 with |

We have

arg z : = argument of z ' ' .

=6, - .

The argument # is determined ohly up to additive integer multiples of 27. ‘T'he frz'ncipal value
of & should be taken to satisfy —x < 6 < 7. ' ' '

Now, for two nonzero complex numbers z, and 2z;, we have

‘ A20A21=|20”21|R00R81'

By problem 7 in the'section on Complex Numbers, the left siae is

A’ozl =|%o%, | Ry 6 :=arg(zgz,) .
But |243, |= |20]]21]> 0 (page 31) so we have
Ro = RGORGI .

In fact these are just the trigonometric addition formulas

cos (8 + 6;) = cos §; cos 6, —sin 6, sin él

sin (8 +6,) = sin 6 cos 6; + cos 6, sin 6, .

Thus 6 = 6, + 6,, that is

arg (z42,) = arg z; +arg 2],

up to additive integer mixltiples of 2w. The polar factorization A, =|z| R, is just a disguised
form of the polar factorization
z =reie, r={z|, f=argsz,

of z itself. The matrix R, corresponds with the complex number

[eio t=cis @ : =cos §+1i sin 0|.

The trigonometric addition formulas simply state that N

TORY; 6. 10
o(foty) _ 36 16y}

This is the law of ezponents for the ezponential function of an imaginary argument.

In this example we used the matrix connection z « A, to develop the polar factorization of a
complex number and its properties. More general polar factorizations of nxn matrices are

important. They are easy consequences of the “singular value decomposition.”

AO-33

33

4. The columns of the qualernion
a
- Q= v &be C

are orthogonal:

a
[—-b a] =-batah=g
b

They have common (squared) Euclidean norm:

[.a_ '5'] : =Ea+5b=lalz+lbf2;

«”

[—b a] -:_ =Eb+a5=13|2+]bF_
z
Problem 7,
2. Compute y’x where
1+i 3
x:=f =1 [, y:=| 1—j
2-i ‘ 2

Are x and y orihogonal?
b. Compute the 2-norms of x and y. Normalize x and y 1 5L unit vectors u and v,
Problem &.
a. Show that the columns of

H = mxhadamard(4)

BT
1 -1 1 -
B T TP
1 —1-1 -

L. -

AO-34

are orthogonal with each other and that their common 2-norms are 2. Hint: Compute H'H. -
Normalize the columns of H to obtain a matrix G with all columns unit vectors. Show that
G'G= I,=GG. '

b. Same problem for

..

W = mxidft(4) -
[1 1 1
1 i -1 i
11 a1 1 -

Frobenius a;x.i:l\ 2-norms of A € FR X,

We must also be able to determine if all elements of a matrix are “small” or if some are “large.”

This involves the notion of matriz norms. - -

The 2-norm of A e FRXm jg

AN, == mes =T

=norm(A) in matlab.

This matrix norm is the most basic and elegant of matrix norms byt jt is not easy to compute. In

~fact

NAll, =0o,(A)
is the largest “singular value” of A. More about “singular valyes™ ip advanced courses. They are

very imporiant. We merely give a geometric interpretation of A) here. By the homogeneity of

the vector 2-norm we also have - -

NAll,:= max [[Auf
2 lally=1 2

Now the set
{u eF™: Jlufl,= 1}
is the unit sphere in F™. It is transformed by A into the set

{Au:ueF’“, "ull.zél}

AO-35

1 3]

in F™, (This set is actually fhe boundary of an ellipsoid in F» but that is not crucial here.) In any
case, J|A | 2 Fepresents the “mazimum enlargement” of the transformation of the unit sphere in Fm
by A. Form=n=1 we have A = & a scalar and it is clea, that || A ”2 =lal. For general m and n
computing || A || 2 Properly, from a numerical point of view, involves finding the largest “eigenvalyen

of the Jordan-Lanczos matrix
0 A
A:= ,
A0

associated with A.

The Frobenius norm of A, [l Al p, is easily computable and is just as powerful as A o+ We

have

L)
]

<+

A=-[a1 2 ... am] = [aji]' i=l"2""'m: j=13.25---1 n,

and the associated “supervector”

a:= € fF™n

=A(:) in matlab,
obtained by stacking the columns of A. The Frobenius norm of A is simply
AN, = llall, |
/m n 1/2
= a;
(i:zl jg [Iz)
= norm (A, fr0)
=norm (A(:)) in matlab .
= normf(A) in Gragg’s codes,

There are two other -ways to write || A |l p.

The trace of a (square) ma'trix B is the sum of its diagona] clements. If B ¢ pnXn then

n
traceB:= >> f, .
k=1

AO-36

Clearly,
trace : F*X® L, F . -
is a linear transformation: . - .
tra.ce. (cA +BB) = o trace A+ f trace B.

Now we have

8 .
A'A = aé [al 3 e 2,
£y
.,»,3_\ -
" — aj'a‘], i=1,2,...,m,j=1,2,. ,ym

* Thus
m m
trace A’A = > a;'a; =3 ”ai ”:
i=1 i=1
is the sum of the squared 2-norms of the columns of A. But we have

2 n 2
2l = 20 |ogi]
=1
SO

m n .
tracc A'A =) |C¥-;[2= "AHI;-
=1 j=1 V! !

It is also clear that || A || =l A’|l . so we have

Il

Al p = (trace A'A)Vé = (trace AA%)L/2,

The latter equality can also be gotten by using
m
AA' = E ‘ai ail
i=1
and the linearity of trace.
It is known that
HAN, < NANR<VEUAN,, €:=min(m, n}.

Thus if (2 is fixed and) || A || o 1s “tiny” (or “huge”) then so is Al g and vice versa,

AO-37

£]

Problem 9.

Use AA' = i 2;2] and the linearity of trace to show that trace AA’ =.[A || ;
1

Problem. 10. .
‘For 100 random 50 x 50 matnces, A= rand (50) or A = random (50) (Gragg’s code) compute the
smallest and largest of the ratios :

Al F _ normf(A)
Al , borm(A)

thus confirming the (unproved!) inequality at the bottom of pzge 37, with Ve = ,/56 = 7.07.
Problem 11, -

- .
The 2-condition number of an n Xn “nonsingular™ matriy, 4 s

R(A) s = (1ALl A7),
=norm (A) # norm (inv (A)= cond (A) in matlab.

After we study “inverses” (A"l =inv (A)) we’ll show how ®5(A) governs the sensitivity of the
solution x-of Ax = b to changes in the right side b. But for nov we want to relate £,(A) with the

more readily computable “Frobenius condition number”
me(A) 1= [[A L A7),
= normf(A) * normf(inv (A)) with Gragg’s normf,

a. Use the (unproved!) inequality above to show that, for n matrices A,

) rp(4)
ey Kz(A)

b. For 100 random mairices, as in problem 10, compute the smallest and largest. of the ratios

=F ((A)) » and thus confirm experimentally the mequaht.y ¥ou proved in a.

7. Solving (lowet) triangular systems.

We work with the example

[1 -Fﬁ Fl-.
2 ' -
Lx=b: b, = 3
3 6 .8 & L}

] 4 7 10J_€4J _"4_1

K

AO-38

We want to solve for

x=[& ¢ & a]T-_‘

. We first pioceed directly.

The system of equations is

1¢, =1
26, +5¢, =-3
8¢, +66,+ 8¢5 =5

We florward)-solve it.

iy
H

.\4 El —

1_
i——-l
—3-~2_ _
==2a
8
5—[3 6] &
£
—L
1
- 6
[3 o]
8
5-(-3)
g =1
10
) &
—4-[4 7 9] &
. 63
10 o

A0-39

¥y

!
—

-

3,
o —————
—

/.

10

as (was prearranged and) is easily checked by matrix-vector rmultiplication:
. ;) - .

R N Y .
2 5 -1
Lx =
: 3 6 8 1
4 7 9 IOJ -l_]

1] [o] (0] [47
= 2 1 + > (-1) + 0 I - 0 (-1)
3 6 ‘ 8 0
N N L2l [
(17 [o] o Fo‘;
| 2 -5 0 . ug
B * Sl 0 |
4_J ‘7J Q-J —IUJ

(17 T o] [1]
-3 0 -3

NI T
Bt I e B Y

(We did some “distributed computing” here!)

AO-40

Using matlab-like notation, in general, at the kth step we must solve
Llk, 1:k—1)x(1: k—1)4L(k, k)x(k) = b(k) -
for x(k): | | -

b() ~ Ll 1: k=1) # x(1 s k-1,

x(k) = Lk, X) —,

Note that x(1: k— 1) must be a column. Because of this, and to ma.ke.the for loop go faster we
initially reserve a column for x. Also, this command will not wor fork =1 since L(1, 1; 0) and
x(1: 0) are empty ([] in matlab). We handle the case k =} separately. Since the “vector®

it=1:k—10of indices occurs more than once we give it a nam,,

————

function x = gfsfsp(L, x)

. n = order (L); x = zeros(n, 1);
T = b/, 1
fork=2:n

i=1:k-1;
x(k) = (b(k) - L(k, i) * x(i))/L(k, k);

end

——

Order is a “Gragg-code” which gives the order of a squar, matrix or an error message if the

matrix is not square. If n < 2 the for loop is not executed.
We wish to write some column oriented codes for f-solving, Transliterations of such codes into

2 “production” language like fortran will be more efficient for lztge matrices because such matrices

are stored by columns. Also this approach is more like the techniques we use for Jactoring A = LU

=|_l . Our system is

r I - - -
1 & 1
2 § -
Lx=b H EZ - 3
3 8 €y 5
4 7 9 10 £ -

If n =1 we have &= -5-1—, and we are done. -
1n

AO-41

3y

In general we partition a lower triangular system as

A f_'ﬂ-;: -
¢ M y—cf (+)

say. L must have all jts diagonal elements nonzero. If p = 1 the matrices &, M, y and c are a]]
empty. The system (%) is equxva]ent with

AE:-_,B, ¢ +My=c. -
Thus wé compute

E=

»I*_m

and then ol;fh\in the reduced system

My=c-t=:4d

which we must ultimately solve for y. We then repeat the r2duction until the reduced system

bccomes one equatxon in one unknown. Thus it is like (*) bt with &M, yandc empty.
For our example, with the indicated partitioning, the first aquation js
=1_
I6=1 s0 ¢ =¢= =1=

The right side of the reduced system is

5] [2] Ta
d=c-=| 5 {-| 3 |1 =. 2
~4 4 . -3
The reduced system is
5 fz =5
63 = '2

The first equation is
5
56:—5 S0 Ez=f=-—5 =-].

The right side of the next reduced system is

AO-42

6 [
d—c-—éf_ -8 - . (—l):!_

The whole reduced system is

The‘ﬁrst equation is
—e_8_

The right si.ci\'e\of the final reduced system is
) d=c—8=~1-9.1=-10.
The final reduced system is

106, =-10 so §4=-1.

Of course the solution is the same as before. In fact, if the scalar products

Lk, 1:k—1) « x(1:k—1) are computed “from left to right= 1, computations are exactly the same

as before. That is they even have the same rounding errors!

This can be turned into matlab code by using the “templaten

k X .
k A S (7
M ¥ - c
Here
A=L(k k), e=x(k),
e=1L(, k) . M=LG,J),-
with

J=k+1:n.
The right side, which is continuélly changing, is stored in b(k : n) so

B=b(K), c=b().

A0-43

Thus

-
K =1n

and the statement d = ¢ — £¢ becomes the replacement

b(i) = b(F) — L(j, k) » x(k) .
Our “zeroth” version of the code gfsf is thus

function x = gfsf0(L, b)
n = order (L); x = zeros (n, 1);
fork=1:n-1

x{(k) = b(k)/L(k, k);

j= ic +.1:n;

b() = b(i) — LG, k) * x(k);
end

x(n) = b(a)/L(n, n);

Note that the empty matrices occur at the last step here. Unfortunately matlab does not overlook
statements like []=[] which would occur at the last statement of the for loop for k=n. It’s
good pr'acéice to reference subscripted variables as little as possible. This probably doesn’t matter

so much with matlab but it is good style. Also, we can initialize x as b and work only ivith the single

vector X. In fortran x and b would be made “equivalent” so only one vector would be stored.

~ Our final version of the (nonrecursive) code is

function x = gfsf(L, b)
n= ;arder Ly x=b;
fork=1:n-1

t = x(k)/L(k, k); x(k) =t;
i=k+1:n; x()=xG)-L(G, k) = ¢t;
end ‘

x(n) = x(n)/L(n, n);

This is the way that good code is written, in stages. Here we used only two stages! We much prefer

this code over gfsfsp. We should have used the replacement x = b in it too!

Codes using recursive calls are even easier. (They are for “lazy people™l) We buxld our code
- gfsfr. Recall that, given the system

AO-44

we compute
¢=%

and then solve the reduced system
My=c—- ¥

for y. But we can replace M by L (i-e., we can call it L) and b by ¢ — €. Then we have

y = gfsfr(L, b) Thus gfsfr calls itself recursively and the order is automatically, recursively,
reduced to n .; 1."-This is the only case we have to compute, apart from “downdating” L and b.

If we initially put x = b(1)/L(1, 1) then we are done if n = 1. Otherwise, we can avoid mtroducmg

¥ by making the replacement x = [x ; gfsfr (L, L)), after “downdating” L and b.

function x = gfsfr(L, b)
n = order (L); x = b(1)/L(1, 1);
ifn>1
j=2:nm b=>b(j) - L(§,1) * x;
L=L(,J)s x=[x glsfr(L, b)};

end

This code delivers the same computational results as gfsf. It is essentially the same code as gfsf.
The compiler does the work of looping. But it is about three times slower than gisf! Considering the

“strassen experience” that’s not too bad!

Problem 12. Write codes analogous with gfsf and gfsfr (call them gfsb and gfsbr) for backsolving

upper triangular systems Ux = b.
Appendix. Some simple codes which use recursive calls.

function f = factorial (n)

fis n FACTORIAL. That is f is the product of the integers 1, 2, 3, ...y 0. I n =0 this is the
empty product 1. The function factorial is probably the simplest msta.nce of a program which
uses recursive calls. It assumes that nis a nonnegative integer.

Copynght (c) 20 July 1991 by Bill Gragg. All rights reservefi.

AO-45

Afactorial calls factorial.

begin factorial

ifn<=0

f=1;
else

f = n#factorial (n—1);
end

end factorial

function H = mxhadamard (n)

H is a HADAMARD MATRIX of order n. n must be power of two.
Cbpyright-(_c) 6 January 1991 by Bill Gragg. All rights reserved.
mxhada.mar;}- calls mxhadamard.

begin mxhadamard

ifn<?2
BE=1;
else
H = mxhadamard(n/2); H=[H H; H —H);
end :

end mxhadamard

AO-46

. < Zxz
COM"T"*'L"M"X ”AHz ! e r A. R T

<

T4 ./l—\D"L 246246‘¢é@p=;¥c “AH.,_

o\ ?
v & ana gpf veal 2x2o . Ma-l-l'.g\.‘,'s

WMoV an (A) Jae-—-, :'k go.r' 'DOG;A_, C e,
) gor AGCC,M."”““. Mor; ze.:—wc .«-a..‘\‘..)’

$uA(A) C o anrn w"rcs +L\¢ 5¢.Ma\u~‘a¢-
. ~p Y

Ya'\swg.s a% A' FO(AeR‘ZxL.,

+L<-,¢ A\ v <

il

c-{ (A] : ?\/:‘:r\ \le.“L = “A\lz

|

Sz (A)r= T2 LAk,

R ——

e

The comdibion muwmber oG A s

O
COMA A = W*A(AI
JW\‘M(AI :

o (Aa)
o.(A)

\/\)e. 6\naw‘ L&W‘Lo C-o—'w‘r‘-*-‘\'% J\'L-ese_

L Ae R

Mu—m\acf‘% 2. O\Mpl g_tve. -t e&awPlzj

%0/' Aé \?z?‘z. Tln-ec;e. c.omc_-gta"“-s

e e ax-lr_-cmct:) I.AMPO..F'\'&.M"" a-..‘ak
= {

k(¢rc

e < éo. \/L)g ;.a-v\'war“c -;s-an.'%L
L. |

Sts—uo.rc. H '
LA 5 H; = (Ax 1TA x ="><TATA')< = xT B x

4&/\"\'\-\. |
2y oy, vy
B ATA - ‘_ o1, a/z,_] ory Fra

rd [5
[S o,y
‘1 —

"RJ) °!n D?a-z"' “"&l dz-:_

d»\dlz"‘*/zt zt.
'dlz + o/7—2

g:. ﬁﬁ] S .‘;).

\A}am-\- + L. M o o ’H—s'—w’g
XT3 x

L<t

Ouﬁf' X Wl'{'L l\x“z=><Tx=‘.

. C . -
x:{s]x C1CO$§,S=$"‘49.

Wg_ C.AMM fM%i"o* —{'Lﬁ'\' -

’ 2

(wls?). TL. c>

X 1 - v
™ = o A
] 2 z 2
Alwauj"-." C s?® = \ N

i xT 18 x

(_c s]‘\ R l
(5=|C+Fzzs
C_’_(ﬁnC+ﬁ1\“5)+~;$‘(§7—'c“'(gﬂ.zs)

(j",,cz*‘ zp;‘cs«-ﬁa%’

i

LA €& Mze&(
a2 ‘PT_% —
d .- X — "'2F|\C$+Q_@12

+ Z @‘-2‘ (C?_s‘z)

2 [._ (ﬁn-—@,,)cs + Fz;(cz—ﬁz]’] = O

4. I% F’zt"
L‘.Qu&.

CS 4+ .

——
——

© but Aux ., we muat
c==

= O , Lok e &8 =0 o r S=E-
TL\:-‘; %\.‘vce .‘—L*‘- 'L"-"’o Of',l‘)'mcs_\

B)

Aea_,ociale A Va\.kt—cc$

bul."('l/.
')-\"': XTBX\"; Gu’-’ °(\2;"’ dzz\:

Nav = IX': Bx, = ﬁ'l‘z = oy, "'"°(z; ,

This |

lA\% a\-so e o e WLCMF *IFZ.‘,_

| 2. No o 6u(>(>o-a.e. 'kk«a% ﬁﬂﬂﬁe o
T .. ~e A~ (.0 2N I

Cz" %z _ Fn "(gzz " | |
c < - | =2(':\ (1)

‘!:2+2ﬁ-‘:—-‘(= O

a "Z)H-o-onas'l:xc. e‘i)“-a’L'OM '.‘_,\"l:
e o 'l'L\. Lu o ‘Lt-uo $o‘c~‘\-vo—v\.sA

=l“:=~=-ﬁ+ L+ 3® >€]/

S o

R o

-

Tl/\e o\—o-L:m«.l VAQC-J\'PI‘% X\“’“A xz.

v = ff‘-k—lz\bo\oﬂ’\‘f‘\‘

CA v =

‘-T-L.c OF-L|M9\-\ Vé.\.\bgce,.o% xTBx

—3\\ = ><:r BX;".ﬁt\Cz*zéz‘CS*@zle

N = XTBX‘Z = WS T- ZFz‘CS +Fzz¢- p

'a—uxﬂlwsu’.—-—.ce— C-.z'-r'$'_‘m=
F TR = B
IS 0M-¢_~OS- 'x\‘or ’)\

<

Votle ,

ﬁz?— - (3)
\--'% '\fz"vtoq_;v-p_ "EL.e.

O'l:!ner C-aM_L‘—‘:'OM"-“’“.'L J\L‘—‘.’\-—Mcj

Flia Govmmala

> Ty

=
U4 g Ty
..g(p‘f.:{"nfs.‘\'.‘, The =i a e
24 ('(‘*ﬁ’).: l+ &%
thad - | |
12 2t = A
TuL -

’>\|. = 2z ¥ 1‘ﬁ\
Po- e &
Ctan A {a-:) ('?,)

.Fkﬂxq\\v, *P‘L‘>?¥
o% l\Ax ll? = VXT3 x

""\-"\4\ Va-\Lh(s

A =

O";'---'W\qx {J‘I,\/‘—;g’”
.azémﬂpuifiuggazi

o e e~ ls o S""AMA'/ ."Vt"l'L\ a—‘n""'k‘\g_
(W""") L“" S""W"w«%\as‘a,'\'(ﬂg

r"‘tlma‘ Vcc'l(vfs
\] Lo 827
©.92349
x’z - l lé O‘-'-lz’%‘l
-C -—0.3%27 ’
. 'i._‘z’So{-
‘3‘ i Ax\ = {o.qz3ﬂ} ’ _\\tj.l\,_--: o,

o.\5S5g¢g | o
Y2 = A x, = LO.E%‘Q_?}, Wyail, = o)

